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Abstract

The recent “no free lunch” theorems of Wolpert and Macready indicate
the need to reassess empirical methods for evaluation of evolutionary and
genetic optimizers. Their main theorem states, loosely, that the average
performance of all optimizers is identical if the distribution of functions
is average. [An “optimizer” selects a sample of the values of the objective
function. Its “performance” is a statistic of the sample.] The present work
generalizes the result to an uncountable set of distributions. The focus
is upon the conservation of information as an optimizer evaluates points
[statistical independence of the selection process and the selected values].
It is shown that the information an optimizer gains about unobserved
values is ultimately due to its prior information of value distributions. [The
paper mistakes selection bias for prior information of the objective func-
tion.] Inasmuch as information about one distribution is misinformation
about another, there is no generally superior function optimizer. Empir-
ical studies are best regarded as attempts to infer the prior information
optimizers have about distributions [match selection biases to constrained
problems] — i.e., to determine which tools are good for which tasks.

0 Sampling Bias Is Not Information

This preface (Sect. 0) addresses expository errors in the original paper, but
stands as a self-contained report. Specific corrections and amplifications appear
in the remainder of the text (Sects. 1–6).

∗Published in Evolutionary Programming V: Proceedings of the Fifth Annual Conference
on Evolutionary Programming, L. J. Fogel, P. J. Angeline, and T. Bäck, eds., pp. 163–169.
Cambridge, Mass: MIT Press, 1996.
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Figure 1: Objective function F and quality measure ψ comprise the optimization
problem. An optimizer is a sampler X, along with a reduction r of the selection
xn1 and the sample yn1 to outputs x̃m1 = xj1 , . . . , xjm and ỹm1 = yj1 , . . . , yjm ,
with jm1 strictly increasing. NFL analyses make four assumptions: the selection
is non-repeating, the reduction is identical for all optimizers under consideration,
the output ỹm1 depends only on the sample, and quality depends only on ỹm1 .
Accordingly, write ỹm1 = r(yn1 ) and φn = ψ(ỹm1 ). Then the quality ψ(r(yn1 )) of
the optimizer’s output is a statistic φ = ψ ◦ r of the sample it generates.

Black-box optimization may be decomposed into generation of a sample of
the values of the objective function, and use of the sample to produce a result.
“No free lunch” (NFL) analyses assume explicitly that sampling is without repe-
tition, and define quality of the optimization result to be a statistic of the sample
(Wolpert and Macready, 1995, 1997). Fig. 1 unpacks the tacit assumptions, the
most important of which is that the optimizers under consideration differ only
in selection of samples. Fig. 2 shows how postprocessing of the sample, assumed
to be identical for all optimizers, is embedded in the statistic. Although the
statistic combines part of the optimizer with part of the optimization problem,
the NFL literature refers to it as the performance measure, and to samplers as
optimization (or search) algorithms.

The better known of NFL theorems, including that of Sect. 3.2 (which ap-
pears also in Streeter, 2003, and Igel and Toussaint, 2005), are reinventions
of basic results in probability (Häggström, 2007). They address sampling and
statistics. This claim is justified by showing that the selection process

Xi ≡ X(F (X1), . . . , F (Xi−1)),

1 ≤ i ≤ n, is statistically independent of the selected values

Fn
1 (X) ≡ F (X1), . . . , F (Xn),

despite its data processing. Sect. 3.1 supplies proof for the special case of de-
terministic selection, with the domain and codomain of the random objective
function restricted to finite sets. Here the result is generalized to random se-
lection, with repetition allowed, and with the domain and codomain possibly
infinite, though countable. Furthermore, the selection process is equipped to ter-
minate. Although this would seem to complicate matters, the proof is greatly
simplified.
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Figure 2: Random sampler X is statistically independent of random objective
function F, and the selection X(λ) = x1, . . . , X(y1, . . . , yn−1) = xn is statis-
tically independent of the sample F (x1) = y1, . . . , F (xn) = yn. The statistic
φ = ψ ◦ r is the composition of the quality measure ψ on optimizer outputs,
given in the optimization problem, and the reduction r of samples to outputs,
assumed to be identical for all optimizers. The selection and the sample are
abbreviated Xn

1 = xn1 and Fn
1 (X) = yn1 , respectively.

The selection process cannot be regarded as having or gaining information of
unselected values of the objective function when it is statistically independent
of the selected values. Data processing is a source of bias in the selection. The
paper fails, in exposition, to recognize statistical independence for what it is, and
refers instead to “conservation of information.” (The formal results are correct.)
It furthermore equates the propensity of an optimizer to perform better for
some distributions of the random objective function and worse for others with
prior information that somehow inheres in the optimizer. The notion that one
entity simply has, rather than acquires, varying degrees of prior information and
misinformation of others is incoherent.

The following subsection formalizes the system sketched in Fig. 2, proves
that the selection is indeed statistically independent of the selected values, and
goes on to demonstrate that a general NFL theorem, so called, follows almost
immediately. This exercise leaves very little room in which to contend that the
NFL theorems address something other than sampling. The preface concludes
with a subsection that briefly deconstructs the paper’s erroneous claims about
information.

0.1 Formal Results on Sampling

0.1.1 Definitions

Sampling processes do not necessarily terminate, and it is convenient to treat
them all as infinite. The distinguished symbol � is interpreted as the sample
terminator. Let countable sets X� = X ∪ {�} and Y� = Y ∪ {�}, where sets
X and Y exclude �. The random objective function F maps X� to Y�, with
F (x) = � if and only if x = �.

Finite sequences of the forms α1, . . . , αn and γ(α1), . . . , γ(αn) are abbrevi-
ated αn

1 and γn1 (α), respectively. A sampler is a random function, statistically
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independent of F, from the set of all finite sequences on Y� to X�. A selection
is a random vector Xn

1 with

Xi ≡ X(F (X1), . . . , F (Xi−1))

1 ≤ i ≤ n, where X is a sampler. The selection is non-repeating if Xn
1 ∈ π(X )

surely, where π(X ) is the set of all non-repeating sequences on X .
A statistic is a function with the set of all finite sequences on Y� as its

domain. Assume, without loss of generality, that the codomain of a statistic is
a countable superset of its range, which is countable like the domain.

0.1.2 Statistical Independence of Selection and Sample

Probability measure is unproblematic when considering the selection Xn
1 and

the corresponding sequence Fn
1 (X), because both take values in countable sets.

The following lemma establishes that the selection is statistically independent
of the selected values, i.e., that it is correct to refer to Fn

1 (X) as a sample of
the values {F (x) | x ∈ X�} of the objective function. The data processing in
extensions of the selection, highlighted in the proof, is a potential source of
selection bias, not information about the objective function.

Lemma. Selection X1, . . . , Xn is statistically independent of F (X1), . . . , F (Xn).

Proof. Let xn1 and yn1 be nonempty sequences on X� and Y�, respectively, such
that P (Fn

1 (x) = yn1 ) > 0. Then

P (Xn
1 = xn1 , F

n
1 (X) = yn1 ) = P (Xn

1 = xn1 , F
n
1 (x) = yn1 )

= P (Xn
1 = xn1 | Fn

1 (x) = yn1 ) · P (Fn
1 (x) = yn1 ),

and

P (Xn
1 = xn1 | Fn

1 (x) = yn1 )

= P (X(F 0
1(x)) = x1, . . . , X(Fn−1

1 (x)) = xn | Fn
1 (x) = yn1 )

= P (X(y01) = x1, . . . , X(yn−11 ) = xn | Fn
1 (x) = yn1 )

= P (X(y01) = x1, . . . , X(yn−11 ) = xn)

because sampler X is statistically independent of objective function F.

Corollary 1. For all statistics φ, selection X1, . . . , Xn is statistically indepen-
dent of φ(F (X1), . . . , F (Xn)).

0.1.3 Simple Derivation of a So-Called NFL Theorem

The following theorem uses the symbol D= to denote equality in probability
distribution. It says, loosely, that the distribution of a statistic depends on the
choice of sampler if and only if the distribution of the statistic depends on the
choice of sample.
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Theorem. Let x1, . . . , xn be a nonempty, non-repeating sequence on X , and let
φ be a statistic. Then

φ(F (X1), . . . , F (Xn)) D= φ(F (x1), . . . , F (xn)) (1)

for all non-repeating selections X1, . . . , Xn if and only if

φ(F (w1), . . . , F (wn)) D= φ(F (x1), . . . , F (xn)) (2)

for all non-repeating sequences w1, . . . , wn on X .

Proof.
(⇒) Suppose that (1) holds for all non-repeating selections Xn

1 , and let wn
1 be

a non-repeating sequence on X . There exists sampler X with constant selection
Xn

1 = wn
1 , and thus (2) follows.

(⇐) Suppose that (2) holds for all non-repeating sequences wn
1 on X , and

let Xn
1 be a non-repeating selection. A condition stronger than (1) follows. For

each and every realization Xn
1 = wn

1 , non-repeating on X by definition,

φ(Fn
1 (X)) D= φ(Fn

1 (w)) D= φ(Fn
1 (x)).

The first equality holds by Corollary 1, and the second by assumption.

Corollary 2. Let x1, . . . , xn be a nonempty, non-repeating sequence on X . Then

F (X1), . . . , F (Xn) D= F (x1), . . . , F (xn) (3)

for all non-repeating selections X1, . . . , Xn if and only if

F (w1), . . . , F (wn) D= F (x1), . . . , F (xn) (4)

for all non-repeating sequences w1, . . . , wn on X .

Proof. Set the statistic φ in the theorem to the identity function.

The corollary is essentially the NFL theorem of Sect. 3.2, and also (Streeter,
2003; Igel and Toussaint, 2005). When equality (4) holds for all n, the random
values {F (x) | x ∈ X} of the objective function are said to be exchangeable
(Häggström, 2007).

0.2 Understanding the Misunderstanding of Information

The root error is commitment to the belief that information is the cause of
performance in black-box optimization (search). The NFL theorems arrived at
a time when researchers commonly claimed that evolutionary optimizers gained
information about the fitness landscape, and adapted themselves dynamically
to improve performance. Wolpert and Macready (1995) observe that superior
performance on a subset of functions is offset precisely by inferior performance
on the complementary subset. In online discussion of their paper, Bill Spears
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referred to this as conservation of performance. My paper suggests that conser-
vation of information accounts for conservation of performance.

The lemma of Sect. 3.1, “Conservation of Information,” expresses the ab-
solute uninformedness of the sample selection process. The performance of a
black-box optimizer has nothing whatsoever to do with its information of the
objective function. But the paper recognizes only that information gain is im-
possible, and claims incoherently that prior information resides in the optimizer
itself. Conservation of this chimeral information supposedly accounts for con-
servation of performance in optimization. Here are the salient points of illogic:

1. Information causes performance.

2. The optimizer gains no exploitable information by observation, so it must
be prior information that causes performance.

3. There is no input by which the optimizer might gain prior information, so
it must be that prior information inheres in the optimizer.

4. Prior information of one objective function is prior misinformation of an-
other. Conservation of performance is due to conservation of information.

It should have been obvious that prior information is possessed only after
it is acquired. The error is due in part to a mangled, literalistic half-reading of
(Wolpert and Macready, 1995, p. 8, emphasis added):

The NFL theorem illustrates that even if we know something about
[the objective function] . . . but don’t incorporate that knowledge into
[the sampler ] then we have no assurances that [the sampler] will be
effective; we are simply relying on a fortuitous matching between
[the objective function] and [the sampler].

The present work (Sect. 6) concludes that:

The tool literally carries information about the task. Furthermore,
optimizers are literally tools — an algorithm implemented by a com-
puting device is a physical entity. In empirical study of optimizers,
the objective is to determine the task from the information in the
tool.

This reveals confusion of one type of information with another. When a tool-
maker imparts form to matter, the resulting tool is in-formed to suit a task. But
such form is not prior information. Having been formed to perform is different
from having registered a signal relevant to the task. An optimization practitioner
may gain information of a problem by observation, and then form a sampler to
serve as a proxy in solving it. Although the sampler is informed to act as the
practitioner would, it is itself uninformed of the problem to which it is applied,
and thus cannot justify its own actions. The inherent form that accounts for its
performance is sampling bias.

Unjustified application of a biased sampler to an optimization problem is
merely biased sampling by proxy. The NFL theorems do not speak to this fun-
damental point. They specify conditions in which all of the samplers under
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consideration are equivalent in overall performance, or are nearly so. Ascertain-
ing that none of these theorems applies to a real-world circumstance does not
justify a bias, but instead suggests that justification may be possible. There is
never a “free lunch” for the justifier.

1 Introduction

In “No Free Lunch Theorems for Search,” Wolpert and Macready (1995) have
established that there exists no generally superior function optimizer. There is
no “free lunch” in the sense that an optimizer “pays” for superior performance
on some functions with inferior performance on others. Their paper shows that if
the distribution of functions is uniform, then gains and losses balance precisely,
and all optimizers have identical average performance.

The news of “no free lunch” spread rapidly through the evolutionary com-
putation (EC) community. Empirical comparison of genetic and evolutionary
optimizers has long been the cornerstone of research in the field (Bäck and
Schwefel, 1993; Fogel, 1995). Furthermore, many workers regard natural evo-
lution as an optimized optimizer that produces outstanding results under all
circumstances. Thus it is not surprising that the significance of “no free lunch”
has been debated vigorously in the community. It is surprising, however, that
few understand the fundamental reasons for the result.

It is even more surprising that the fundamental reasons have changed sev-
eral times during the preparation of this paper. The primary objective was, and
is, to provide EC practitioners with an accessible explanation. It is purely for-
tuitous that simplification of the formal presentation has led to new results on
“no free lunch” distributions — that is, function distributions for which random
walks are optimal. The formal demonstration depends primarily upon a theo-
rem that describes how information is conserved [not gained] in optimization.
This Conservation Lemma states that when an optimizer evaluates points, the
posterior joint distribution of values for those points is exactly the prior joint
distribution. Put simply, observing the values of a randomly selected function
does not change the distribution.

To see the usefulness of the lemma, suppose that function values are inde-
pendent and identically distributed (iid). The Conservation Lemma indicates
that the values observed by an optimizer will also be iid. In essence, the points
are identical roulette wheels, and all ways of visiting n distinct points corre-
spond to identically distributed value sequences. Thus there is no distinction
between optimizers’ value-sequence distributions. Any distinction between the
value-sequence distributions on a subset of functions is “canceled” by a distinc-
tion on the complementary subset. This cancellation is most intuitive when val-
ues are iid uniform — i.e., when the distribution of functions is uniform (Wolpert
and Macready, 1995).

The following section presents several definitions and concepts required in
Section 3, where the formal results are derived. Section 4 discusses the signifi-
cance of the results. Section 5 makes suggestions for future research in genetic
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and evolutionary optimization. Section 6 states several conclusions, and briefly
argues that no conclusions about natural evolution are justified.

2 Definitions, Concepts, and Notation

The section starts with a brief review of functions. Then the notion of a random
distribution of functions is presented in a simple, but somewhat unusual, way.
After that, the notions of mutual independence and mutual information are
explained in terms relevant to the present work. Finally, the term walk (as
in “random walk”) is defined as an abstraction of an optimizer’s decisions to
evaluate points in a particular order. The theorems of Section 3 will refer to
walks, and not to optimizers.

2.1 Functions

Let S and T be sets. A function f from domain S to codomain T, denoted
f : S → T, is a subset of S × T such that for each x ∈ S there is exactly one
y ∈ T for which (x, y) ∈ f. The expression y = f(x) is equivalent to (x, y) ∈ f.
The range of f is f(S) = {f(x) : x ∈ S}.

To paraphrase loosely, a function is a set of value assignments. Every do-
main element has exactly one value in the codomain. The codomain elements
that are actually “used” as values comprise the range. For instance, if f =
{(b, 2), (a, 2), (c, 1)} then the domain is {a, b, c} and the range is {1, 2}. Any
superset of the range may be regarded as the codomain. Note that f is equiva-
lent to the union of three disjoint and non-empty functions; i.e., f = {(a, 2)} ∪
{(b, 2)} ∪ {(c, 1)}.

In the present work, as in (Wolpert and Macready, 1995), the domain and
codomain are assumed to be finite. The significance of this restriction is math-
ematical, rather than practical, because digital computers represent only finite
sets. Extension of the formal results to infinite sets is straightforward, but in-
terpretation becomes considerably more complicated.

2.2 Distributions of Functions

It is no more odd to say that a random variable is distributed on a set of functions
than to say that it is distributed on a set of Presidential candidates. The random
variable models uncertainty about an event, and there are no restrictions upon
the set of possible outcomes. For instance, let random variable F be distributed
on the set of all functions from S to T. The expression P (F = f) denotes the
probability that the outcome [realization] of F is a particular function f : S → T.
If F is uniformly distributed, then P (F = f) = |T |−|S| for each of the |T ||S|
functions f from S to T.

Recalling the definition of a function, F can be written

F = {(x1, F (x1)), (x2, F (x2)), . . . (xn, F (xn))},
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where |S| = n. The random variables F (x), x ∈ S, are sometimes referred to
as the values of F. Note that x is an index, not an argument, in the expression
F (x). This notation permits the straightforward statement,

P (F = f) = P (F (x1) = f(x1), . . . , F (xn) = f(xn))

for all functions f. That is, the distribution of a random function corresponds
to a joint distribution of its values.

As an example of the relationship between the distribution of F and the
distributions of its values, note that F is uniform on the set of all functions from
S to T if and only if the distributions of its values are mutually independent
and uniform on T.

It is sometimes convenient to refer to an observed outcome of a random
variable, X, as a realization of X. In the context of function optimization, some
additional terminology is helpful. The optimizer operates upon a realization of
F. Evaluating or visiting point x is equivalent to observing the realization of
the value F (x). It is said that the value of x has been observed. The values of
unvisited points are said to be unobserved.

2.3 Mutual Independence

The random variables F (x), x ∈ S, are mutually independent if and only if

P (F = f) =
∏
x

P (F (x) = f(x))

for all functions f from S to T. That is, for every joint outcome the probability
is the product of the probabilities of the individual outcomes. Equivalently, the
values are mutually independent if and only if all conditional distributions are
identical to their unconditional distributions. That is,

P (G = g | H = h) = P (G = g),

for all outcomes g of G and h of H, where G and H are disjoint subsets of F.
Put simply, the distributions of unobserved values do not change when some
values have been observed.

2.4 Entropy and Mutual Information

This subsection provides a sufficient set of concepts and definitions to under-
stand the information theoretic analysis of function optimization in later sec-
tions.

2.4.1 Entropy

The entropy of a distribution [probability distribution p of random variable X] is
the average uncertainty of the outcome or, equivalently, the average information
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gained when the outcome is observed. For each possible outcome x, −log2 p(x)
[bits] is the information gained when x is observed. The average information is

H(X) = −
∑
x

p(x) log2 p(x),

where x ranges over the possible outcomes of random variable X.
This measure of information has profound physical significance. Consider a

scenario in which an observer uses a binary code and some method of trans-
mission to tell a non-observer about the outcomes. A compelling measure of
information in the outcomes is the minimum bit rate (bits per outcome) that
suffices to keep the non-observer fully informed. Determining the minimum bit
rate over all possible codes is a daunting prospect, however. In each code, out-
comes have binary names, and the bit rate is

∑
x p(x)n(x), where n(x) is the

length of the name for outcome x. Fortunately, a fundamental theorem of in-
formation theory states that the bit rate is minimized when each outcome is
assigned a name of −log2 p(x) bits. [This assumes a prefix code.] These ideal
lengths are not necessarily integers, but there is an efficient algorithm that al-
ways succeeds in generating a real code with bit rate [approaching the bound]∑

x

p(x)n(x) = −
∑
x

p(x) log2 p(x).

[It may be necessary to encode outcomes in large blocks, rather than individ-
ually.] Thus the entropy of a distribution is the minimum bit rate that allows
a non-observer to be fully informed of outcomes. Other forms of entropy are
H(X,Y ), the joint entropy, and H(X|Y ), the conditional entropy, where X and
Y are random variables. As the names and notations suggest, H(X,Y ) is the
average information in joint outcomes of X and Y, and H(X | Y ) is the average
information in the outcome of X when the outcome of Y is known. The identity
p(x, y) = p(x | y)p(y) has as its analog H(X,Y ) = H(X | Y ) +H(Y ).

2.4.2 Mutual Information

Another measure of information is defined in terms of entropy. The mutual
information of the distributions of X and Y is

I(X;Y ) = H(X)−H(X | Y ).

The difference H(X)−H(X | Y ) is the reduction in average uncertainty when
the outcome of Y is known. The reduction is non-negative, although some out-
comes of Y may supply negative information (i.e., increase the uncertainty of
the outcome of X).

In the present work, the mutual information of the distribution of a function
value and a joint distribution of function values is of particular interest. For
a random variable F distributed on the set of all functions from S to T, the
mutual information of the distributions of F (x) and G ⊂ F, x ∈ S, F (x) /∈ G,
is

I(F (x);G) = H(F (x))−H(F (x) | G).
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This may be interpreted as potential reduction in an optimizer’s [practitioner’s]
average uncertainty about the value of x after visiting a certain set of points.
Actual reduction requires knowledge of the joint distribution of G and F (x).
That is, when the realization of G is g, p(y | g) = p(y, g)/p(g) for all possible
realizations y of F (x). The optimizer gains information about F (x) to the degree
that it obtains p(y|g). Thus the information comes from the optimizer’s prior
information of p(y, g), not g itself. [Knowledge may be a matter of degree, de-
scribed perhaps in terms of the relative entropy of the assumed and actual
distributions.]

By definition, the values of F are mutually independent if and only ifH(F (x) |
G) = H(F (x)) for all F (x) ∈ F and G ⊂ F, F (x) /∈ G. But H(F (x) | G) =
H(F (x)) is equivalent to I(F (x);G) = 0. Thus mutual independence is equiv-
alent to zero mutual information of all values and subsets of values. In this
context, it is instructive to note that the total amount of information gained
about unobserved values from observed values is

∑
xH(F (x))−H(F ) bits, on

average. The difference is zero if and only if the values of F are mutually inde-
pendent.

2.5 Walks of Functions

[A so-called walk is a non-repeating selection.]

The notion of ‘honest’ selection of a sequence of points is formalized with the
definition of walk. In essence, it is dishonest to evaluate points and omit them
from the sequence. It is also dishonest to conceal the order in which points are
evaluated.

Formally, let x denote any finite sequence of points in the domain of function
f. Sequence x is a walk of f if and only if x is empty or x = x′x such that

1. x′ is a walk of f,

2. x does not occur in x′, and

3. x is selected without reference to values of points other than those in x′.

Note that the definition does not preclude stochastic selection of m > 1
points at a time. Any permutation of simultaneously selected points may be
added to the end of the walk, subject to the constraint that no points in the walk
are duplicated. Thus the parallel exploration that characterizes evolutionary and
genetic algorithms is not excluded.

When functions are randomly distributed, the value sequence of an arbitrary
walk x = x1 . . . xn, is randomly distributed as well. The expression px(y1, . . . , yn)
denotes the probability that value sequence y1 . . . yn corresponds to x.

3 Fundamental Theorems

This section explores the relationship between properties of the distribution of
functions and properties of the distribution of value sequences for a walk. Of
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particular interest are the conditions under which all walks w and x of identical
length have identical value-sequence distributions pw and px. When the value-
sequence distribution depends only upon the length of the walk, it clearly does
not depend upon the procedure by which the walk is generated.

3.1 Conservation of Information

[In the notation of the preface, the selection Xn
1 and the sample Fn

1 (X) are sta-
tistically independent. This means that samplers operate with no information
whatsoever of unrealized values of the objective function. Nonexistent informa-
tion is not conserved.]

An important property of walks is that they provide no information about the
values of visited points. The ubiquitous claim that optimizers gain and ex-
ploit information about functions is somewhat misleading [wrong ]. The follow-
ing proof shows that optimizers gain information about the values of unvisited
points without gaining information about the function [are nothing but biased
samplers]. This apparent paradox is resolved by noting that optimizers exploit
the redundancy (mutual information) of value distributions.

Lemma (Conservation). Let F be distributed on the set of all functions from
finite set S to finite set T. If x = x1 . . . xn is a walk of F and (y1, . . . , yn) is in
Tn then

px(y1, . . . , yn) = P (F (x1) = y1, . . . , F (xn) = yn).

The proof proceeds by induction on n. For n = 1, px(y1) = P (F (x1) = y1)
because x1 is by definition selected without reference to the value of any point.
Now suppose that the equality holds for n = k, 1 ≤ k < |S|. For arbitrary walk
x = x1 . . . xk+1 = wxk+1, the prefix w is by definition a walk, and

px(y1, . . . , yk+1) = px(yk+1 | y1, . . . , yk) pw(y1, . . . , yk).

The induction step is completed by showing that each factor in the right-hand
side can be rewritten as the corresponding factor in

P (F (x1) = y1, . . . , F (xk+1) = yk+1)

= P (F (xk+1) = yk+1 | F (x1) = y1, . . . , F (xk) = yk)

× P (F (x1) = y1, . . . , F (xk) = yk).

By definition, xk+1 is selected without reference to values of points other than
x1, . . . , xk, and therefore

px(yk+1 | y1, . . . , yk) = P (F (xk+1) = yk+1 | F (x1) = y1, . . . , F (xk) = yk).

By hypothesis,

pw(y1, . . . , yk) = P (F (x1) = y1, . . . , F (xk) = yk).

This establishes that the equality stated in the lemma holds for n = 1, . . . , |S|.
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3.2 Distributions Independent of Walk Selection

[This is a poor argument that the distribution of the sample is independent of
the sampler if and only if the random values {F (x) | x ∈ X} are exchangeable
(Häggström, 2007).]

It follows from the Conservation Lemma that px = pw for all walks x = x1 . . . xn
and w = w1 . . . wn if and only if the distributions of all sets {F (x1), . . . , F (xn)}
and {F (w1), . . . , F (wn)} of n values are identical. If all sets of n values are iden-
tically distributed for n = 1, . . . , |S|, then the distribution of value sequences is
identical for all ways of selecting walks. Furthermore, all conditional distribu-
tions px(yk+1 | y1, . . . , yk) depend only upon k. This indicates that all sets of
k observed values supply the same information about each of the unobserved
values.

3.3 Mutually Independent Value Distributions

[If the random values in {F (x) | x ∈ X} are mutually independent, then so
are those in Fn

1 (X), by independence of the non-repeating selection Xn
1 and

the sample. In this circumstance the practitioner cannot use realized values to
predict unrealized values. There are no decisions to be made while sampling,
and the practitioner can do no better than to select Xn

1 = xn1 in advance.]

If function values are mutually independent, each of the posterior distributions
px(yk+1 | y1, . . . , yk) is identical to the corresponding prior, P (F (xk+1) = yk+1).
Thus an optimizer [no, the practitioner] can exploit only prior information [of
individual random values F (x)] — there is no mutual information. To be more
explicit, no strategy is better than one that selects a fixed walk on the basis of
the prior distribution of values, irrespective of the realization of F.

Theorem (Independent Values). Let F be distributed on the set of all functions
from finite set S to finite set T . Also let x = x1 . . . xn be a walk of F and
let (y1, . . . , yn) be an element of Tn. If the values F (x), x ∈ S, are mutually
independent then

px(y1, . . . , yn) = P (F (x1) = y1)× · · · × P (F (xn) = yn).

This is demonstrated by writing

px(y1, . . . , yn) = P (F (x1) = y1, . . . , F (xn) = yn)

= P (F (x1) = y1)× · · · × P (F (xn) = yn).

The first step is justified by the Conservation Lemma, and the second by the
mutual independence of F (x1), . . . , F (xn).

3.4 Independent and Identical Value Distributions

[If the random values in {F (x)} are i.i.d., then they are exchangeable. When F
is uniform on finite Y X , the values in {F (x)} are i.i.d. uniform.]
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If values are not only mutually independent, but identically distributed, then
every ordering of points corresponds to an identical sequence of value distri-
butions. That is, sequences of n iid values are iid n-sequences of values. As is
evident in the following corollary, the distribution px depends only upon the
length of x.

Corollary (IID Values). If, in addition to the hypotheses of the Independent
Values Theorem, the values F (x), x ∈ S, are identically distributed as random
variable Y then

px(y1, . . . , yn) =
∏
i

P (Y = yi).

To verify, substitute P (Y = yi) for P (F (xi) = yi), i = 1, . . . , n, in the equality
of the theorem.

3.5 “Needle in a Haystack” Functions

[Exchangeable values {F (x)} are mutually independent only if identically dis-
tributed. To see this, suppose that exchangeable F (x1) and F (x2) are indepen-
dently, but not identically, distributed. Then the sequence F (x1), F (x2) is not
distributed as F (x2), F (x1), a contradiction. In short, the practitioner cannot
necessarily exploit the mutual information of values {F (x)}.]

The IID Values Corollary is much stronger than a statement that all walks of a
given length have identically distributed value sequences. It says that all points
in all walks have identically distributed values. As one might guess, mutual
independence is not a necessary condition for the walk selection procedure to be
irrelevant to the distribution of value sequences. There are function distributions
in which the mutual information of value distributions cannot be exploited by
any optimizer. It cannot be exploited because every set of k observed values
provides the same information about each of the unobserved values (Section 3.2).

This is illustrated by constructing a distribution of “needle in a haystack”
functions. Let the domain and codomain be S = {a, b, c, d} and T = {0, 1},
respectively. Let random variable F be uniformly distributed on the four func-
tions from S to T that assign 1 to exactly one element of the domain. It is easily
verified that all value subsets of equal size are identically distributed. Thus all
procedures for generating walks yield identical value-sequence distributions.

It remains to be shown that the value distributions are mutually informative.
For each x ∈ S, P (F (x) = 0) = 3/4 and P (F (x) = 1) = 1/4. This gives entropy
of H(F (x)) ≈ 0.81 bits for each value. With four equiprobable realizations of
F, H(F ) = 2, and the total mutual information of the value distributions is∑

xH(F (x))H(F ) ≈ 3.24− 2 = 1.24 bits.
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4 Discussion

4.1 The Source of Information

The Conservation Lemma indicates that a walk-generating procedure [begins
with no information, and] gains no information about [unrealized values of ]
the function. As mentioned in Section 2.4.2, mutual information is not gained
from observed values. An optimizer exploits mutual information only to the
degree that it is informed of the prior distribution of functions. [The practitioner
possibly exploits mutual information.] Mutual information is a measure of the
information that can be gained from [about unrealized values from realized
values by knowing ] the prior distribution. [But this information is not necessarily
useful. Exchangeable {F (x)} generally are not independent.]

Note that not all parts of the joint distribution are equally relevant to lo-
cating optima. In some cases there is strong regularity in the structure of the
distribution which can be captured in a simple procedure — e.g., consider op-
timization of quadratic functions. Thus there are subtle questions as to what
prior information is embedded in the algorithm, and as to how it is encoded.
[A practitioner with prior information of an optimization problem may form a
sampler to serve as a proxy in solving the problem. Although the sampler is
informed to decide as the practitioner would, it cannot obtain prior information
of the problem as the practitioner does. See Sect. 6.]

4.2 No Free Lunch

The present work does not contradict earlier results (Wolpert and Macready,
1995), because a distribution of functions is uniform if and only if the values
are iid uniform. The uniform distribution is a very special case, because it is
the average of all distributions. The notion that an optimizer has to “pay” for
its superiority on one subset of functions with inferiority on the complementary
subset is easiest to understand in the case of the uniform. The issue of whether
the distribution of problems in the world is uniform is irrelevant. The point is
to gain insight into the economy of information and optimization performance.

4.3 Optimizing Uniformly Distributed Functions

[This subsection remains of value because it explodes a false intuition. However,
almost all objective functions are implemented by no program much shorter
than than one that stores all of the values in a lookup table. Unless the solution
space is small, physical existence of such a program is implausible.]

The obvious interpretation of “no free lunch” is that no optimizer is faster, in
general, than any other. This misses some very important aspects of the result,
however. One might conclude that all of the optimizers are slow, because none
is faster than enumeration. And one might also conclude that the unavoidable
slowness derives from the perverse difficulty of the uniform distribution of test
functions. Both of these conclusions would be wrong.
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Probability [p]
Fraction [q] 0.01 0.001 0.0001
0.99 458 687 916
0.999 4603 6904 9206
0.9999 46049 69074 92099
0.99999 460515 690772 921029

Table 1: Number of trials required to obtain a particular quality at a particular
probability. [Number of trials for which the probability is p that all values are
in the lower fraction q of the range. A trial is an evaluation of a domain element
drawn uniformly at random.]

If the distribution of functions is uniform, the optimizer’s best-so-far value
is the maximum of n realizations of a uniform random variable. The probability
that all n values are in the lower q fraction of the codomain is p = qn. Exploring
n = log2 p [n = log(p)/log(q)] points makes the probability p that all values are
in the lower q fraction. Table 1 shows n for several values of q and p.

It is astonishing that in 99.99% of trials a value better than 99.999% of those
in the codomain is obtained with fewer than one million evaluations. This is an
average over all functions, of course. It bears mention that one of them has only
the worst codomain value in its range, and another has only the best codomain
value in its range.

Breeden (1994) has given an analogous distribution-free result for finite func-
tions. Suppose that all points have been ranked according to value, with ties
broken arbitrarily. Further, let it be the rank function, rather than the given
test function, that is optimized. If a point is drawn randomly from the domain,
the value is uniform on the set of ranks. It follows that randomly drawing n
points, with replacement, is equivalent to sampling a uniform random variable
n times. This is precisely the condition underlying the computations in the table
above. Thus the table also describes the relationship between rank, probability,
and number of evaluations in random optimization of any finite function. In this
case, however, the numbers do not represent an average over functions. They
apply to each rank function individually.

How can test functions from a distribution with absolutely no structure be
so easy, on average, to optimize? When function values are drawn independently
from a uniform distribution, high values are as likely as low values. High and
low values, both, tend to be spread throughout the domain. Every point is a
good one to try, and the order in which points are tried is irrelevant. Intuitively,
when there is no structure to help the optimizer find good points, there is also
no structure to hide good points. As the next subsection shows, the number of
good points is also very important.
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4.4 The Hardest Distributions Are the Easiest

The “needle in a haystack” distribution (Section 3.5) is the hardest distribution
for function maximizers. Knowing which element of the domain is assigned the
good value is equivalent to knowing the identity of the function. Thus the en-
tropy of the distribution of good points is equal to the entropy of the distribution
of functions. The location of good points cannot be more uncertain.

The most difficult distribution for maximizers is the least difficult for min-
imizers. When the sense of optimality is reversed, the problem is to find the
“hay.” The entropy of the location of good points cannot be smaller without be-
ing zero. Changing the optimality criterion does not change the distribution of
values, and thus there is no mutual information to be exploited by minimizers.
That is, there is no strategy for avoiding the one point with a bad value.

The reason that the mutual information cannot be exploited is interesting.
The location of the maximum is uniformly distributed on the domain, and all
non-maxima have identical values. Observing 0’s at visited points yields no
information as to which of the unvisited points has the value of 1. The mutual
information corresponds to reduction in uncertainty as to whether one of the
unvisited points is the optimum. Observing a 1 removes all uncertainty about
the values of unvisited points.

Recall that the domain of the four functions in the distribution is {a, b, c, d},
and that H(F (x)) = 0.811 bits for all points x. When the values of three points
have been observed there is no uncertainty in the value of the remaining point.
This indicates that the joint entropy of any three value distributions is 2 bits. It
is easy to determine that the joint entropy of any two distributions is 1.5 bits.
Thus, on average, the first value observation supplies 0.811 bits, the second
1.5− 0.811 = 0.689 bits, the third 2− 1.5 = 0.5 bits, and the fourth 2− 2 = 0
bits of information. The corresponding mutual information values are 0, 0.122,
0.311, and 0.811 bits. As indicated in Section 3.5, the total mutual information
of the value distributions is 1.244 bits.

5 Ramifications for Future Studies

From the discussion of preceding sections, there emerges a clear picture of what
empirical studies can and should do. Perhaps the most important observation is
that each optimizer has knowledge of some distribution of functions. [A sampler
does not have knowledge, i.e., justified true belief. It may operate with bias,
i.e., totally unjustified belief about the problem.] Thus empirical performance
assessment in the absence of a distribution of problems is meaningless. Of course,
the class of multimodal functions is often identified in the EC literature. But
if one takes multimodal to mean “not unimodal,” then virtually all functions
are multimodal. Thus the implicit uniform distribution on the class makes the
performance of all optimizers nearly identical. Specifying a class that is too
broad is not much better than specifying no class at all.

The literature is dominated, however, by continuous functions selected for
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response surface shape. This amounts to a strong Euclidean bias. The bias is
particularly clear in many descriptions of how an evolutionary algorithm “finds
its way” to an optimum, perhaps adapting itself to the orientation of “ravines”
in the response surface. (Similar, but not Euclidean, biases are evident in genetic
algorithms. The number of variations of genetic algorithms makes general state-
ments difficult.) An appropriate way for research to proceed would be for the
properties of interest — they do exist — to be explicitly identified, and for the
distribution of functions with those properties to be sampled. Means for random
sampling do not necessarily exist, but that does not reduce the importance of
obtaining a representative sample by some reasonable means. Note, also, that
difficulties in random sampling generally diminish as the class is restricted.

5.1 “Promising” Algorithms

Anyone slightly familiar with the EC literature recognizes the paper template
“Algorithm X was treated with modification Y to obtain the best known results
for problems P1 and P2.” Anyone who has tried to find subsequent reports on
“promising” algorithms knows that they are extremely rare. Why should this
be the case?

A claim that an algorithm is the very best for two functions is a claim that
it is the very worst, on average, for all but two functions. Indeed, the only way
to make an algorithm faster on a given set of functions is to make it slower
on others. It is possible, and clearly undesirable, for speed-ups on particular
functions to be attended by slow-downs on other functions in the class the
algorithm is intended to handle well.

In studies of algorithm X-with-Y , there is rarely explicit indication of the
class of functions the algorithm should optimize rapidly. It is easy to discern
(particularly after conversations with authors) that X-with-Y is “promising”
because the author believes that some additional modification will give excellent
performance on at least one benchmark in {P3, ..., PN} without detracting from
the performance on P1 and P2. Obviously the class of interest is the set of all
popular benchmark problems.

It is due to the diversity of the benchmark set that the “promise” is rarely
realized. Boosting performance for one subset of the problems usually detracts
from performance for the complement. In any case, the notion that the best
algorithm is one that works well for a wide range of problems is highly dubious,
in light of “no free lunch.” The standard X-with-Y studies have always been
subject to criticism, if only because of their exclusion of bad results. There is
now a strong basis for saying that they are totally illegitimate.

5.2 Extensive Benchmark Studies

There is a class of studies of an entirely different caliber, which compares algo-
rithm variants or different algorithms on more than a few benchmark problems.
A major justification for such studies is that they assess algorithms with a di-
verse collection of problems, and that if one algorithm does better than another
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on a wide range of problems, it is genuinely a better algorithm. Algorithms that
do well on only two or three problems are generally considered to be tuned to
those problems.

It is not so much that the rationale for extensive benchmark studies is wrong
as it is that the objective of finding a generally better algorithm does not appear
to be well founded. It is much as though the community is insisting that tools
be Swiss army knives instead of hammers and screwdrivers.

Revision of objectives is strongly indicated by link of performance to infor-
mation of the prior distribution [sampling bias]. “How good is the optimizer?” is
more appropriately “What does the optimizer do?” The preoccupation with the
best optimizer should shift to an interest in finding the right optimizer for the
job. The benchmark problems would profitably be replaced by a collection of
diagnostic distributions. That is, the distributions would be designed to provide
information as to how an optimizer works.

Researchers who select distributions, sample them, and give a full charac-
terization of the results of trials provide information that can be used in many
ways.

5.3 Applications

Studies of applications have the advantage that distributions are given. The
main concern is to obtain a random and representative sample, as it always has
been. There are no apparent ramifications of “no free lunch” for these studies.

It is extremely interesting, however, that in most applications the basic algo-
rithm is tuned to fit the problem domain. For some applications, the algorithm
fails miserably prior to modification. This is not a rare event, and it is just what
one would expect on the basis of the “no free lunch” arguments.

6 Conclusion

[The following discussion of the information of tools is correct, but only because
it shifts to a different sense of information. When a toolmaker imparts form
to matter, the resulting tool is literally in-formed to suit a task. This kind of
information is not prior information. Having form is different from observing
beforehand. An optimization practitioner may gain information of a problem by
observation, and then form a sampler to serve as a proxy in solving it. Although
the sampler is informed to decide as the practitioner would, it cannot gain
information of the problem as the practitioner does, and thus cannot justify
decisions. Its sampling bias is form imparted by the practitioner.]

Hammers contain information about the distribution of nail-driving problems.
Screwdrivers contain information about the distribution of screw-driving prob-
lems. Swiss army knives contain information about a broad distribution of sur-
vival problems. Hammers and screwdrivers do their own jobs very well, but they
do each others jobs very poorly. Swiss army knives do many jobs, but none par-
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ticularly well. When the many jobs must be done under primitive conditions,
however, Swiss army knives are ideal.

The tool literally carries information about the task. Furthermore, optimizers
are literally tools — an algorithm implemented by a computing device is a
physical entity. In empirical study of optimizers, the objective is to determine
the task from the information in the tool. The problem of the EC researcher
is similar to that of an anthropologist trying to explain excavated artifacts.
EC researchers make and bury the tools before digging them up and trying to
explain them, however. This anomaly derives from the fact that the algorithms
are biologically inspired, but poorly understood.

Do the arguments of this paper contradict the evidence of remarkable adap-
tive mechanisms in biota? The question is meaningful only if one regards evo-
lutionary adaptation as function optimization. Unfortunately, that model has
not been validated. It is well known that biota are components of complex, dy-
namical ecosystems. Adaptive forces can change rapidly and nonlinearly, due in
part to the fact that evolutionary adaptation is itself ecological change. In terms
of function optimization, evaluation of points changes the fitness function. The
Conservation Lemma clearly does not apply to such a process.
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